
Generalization and Transfer in Robot Control

Stephen Hart and Shiraj Sen and Roderic Grupen
Laboratory for Perceptual Robotics

University of Massachusetts Amherst
140 Governors Dr., Amherst, MA 01003 USA

{shart,shiraj,grupen}@cs.umass.edu

Abstract

We address the generalization and transfer
of sensorimotor programs in robot systems.
We use a factorable control-based approach
that provides a natural, discrete abstrac-
tion of the underlying continuous state/action
space and thus allows for the application of
learning algorithms that converge in practical
amounts of time. We argue that our approach
provides an efficient means for the adapta-
tion of skills to new situations. We show the
performance gains for our framework in sim-
ulation, and demonstrate results from on-line
learning on a bimanual robot.

1. Introduction

Autonomous acquisition of complex robot behavior
has proven to be a significant challenge in artifi-
cial intelligence and machine learning research. Two
recent trends in the literature have addressed the
ability to transfer skills learned in one context to
another and to create generalizable representations
from context-specific experience to facilitate trans-
fer. Transfer and generalization allow for the re-use
of knowledge and accelerate learning in new, related
tasks.

Our approach relies on factoring closed-loop feed-
back control programs into declarative and procedural
components. The declarative structure of a program
can be transfered to different contexts because it cap-
tures only abstract information about objectives re-
quired to meet a behavioral goal. The procedural
structure supports generalization by parameterizing
declarative objectives based on environmental con-
text.

In this paper, we investigate two criteria for re-
parameterization of control programs. The first re-
quires that procedural choices adhere to the transi-
tion dynamics of the initial program. Such an ap-
proach has been used in reinforcement learning sys-
tems by Ravindran (Ravindran, 2004) and has been
applied to control programs by Platt (Platt, 2006).
The second technique imposes re-parameterization
constraints by maintaining domain compatibility

among sensorimotor resources, and is a formaliza-
tion of the techniques presented in previous work by
the authors (Hart et al., 2005).

We present results in which a robot learns a
ReachTouch behavior that, although seemingly
simple, provides a rich domain for generalization,
and is a common subsequence for virtually every ma-
nipulation task a robot performs. We show in sim-
ulation that our techniques for generalization and
transfer increase performance over related learning
techniques that do not. Finally, we demonstrate the
proposed approach in a real robot system.

2. Background

2.1 Related Work

The concept of generalizable units of behavior is re-
lated to Piaget’s discussion of schema (Piaget, 1952).
Piaget suggested that schema are formed to meet
new demands through a process of accommodation
and that existing schema respond to new experiences
through a process of assimilation. This paper ad-
dresses how to combine these processes into a unified
computational framework. Computational schema
have been demonstrated in rule-based control sys-
tems (Nilsson, 1994) and empirical cause-and-effect
systems in discrete domains (Drescher, 1991) and
continuous domains that can be explored through
active learning (Mugan and Kuipers, 2007).

In the machine learning literature, transferring
skills from one context to another has gathered much
recent interest. Wilson et al. presents an approach
for learning shared structures in Markov Decision
Processes (MDPs) that can be applied to multiple
tasks (Wilson et al., 2007). Mehta et al. assumes the
reward functions to be linear combinations of reward-
ing features with only the feature weights varying
among otherwise fixed MDPs (Mehta et al., 2005).
Ravindran (Ravindran, 2004) exploits graph homo-
morphisms in an MDP to learn general policies in
an abstract space. These approaches exploit the un-
derlying structure in a large class of MDPs, but are
hard to transfer to real robots because of the lack of
enough training data.

In contrast, Cohen et al. provided a promising ex-
ample of how the dynamics of control actions can be
used to learn schemas that can be transfered to new
situations (Cohen et al., 2007). Our approach also
makes use of low-level controllers and their dynam-
ics to learn robot specific knowledge structures that
are generalized to accommodate for context-specific
contingencies. We extend the control framework
presented in Coelho (Coelho and Grupen, 1997) and
Huber (Huber and Grupen, 1997) by providing a for-
mal means of generalizing control programs from on-
line experience.

Our framework is similar to agent-space op-
tions (Konidaris and Barto, 2007), but differs in that
our agent-space is defined entirely in terms of con-
troller state, not raw perceptual features that tend
to be continuous and multi-dimensional. Both ap-
proaches, however, encounter a problem in that the
agent spaces become non-Markovian when transfered
to new contexts. In (Konidaris and Barto, 2007),
a problem-space was introduced to maintain the
Markov property. In our design, we rely on recov-
ering hidden state in the environment by learning
increasingly rich procedural policies.

2.2 The Control Basis

In this section, we present the control basis frame-
work for constructing closed-loop control actions.
The control basis is defined by three sets: poten-
tial functions, Ωφ, feedback signals, Ωσ, and motor
parameters, Ωτ . Ωσ and Ωτ are grounded in the
robot’s sensor and actuator sets, and Ωφ describes
a set of potential functions representing primitive
subtasks for integrated behavioral programs. This
framework provides a means of estimating state in-
formation that supports optimal control decisions.

2.2.1 Control Actions

Primitive actions in the control basis framework
are closed-loop feedback controllers constructed by
combining a potential function φ ∈ Ωφ, with
a feedback signal σ ∈ Ωσ, and motor vari-
ables τ ∈ Ωτ . In any such configuration,
φ(σ) is a scalar potential function (e.g., a navi-
gation function (Koditschek and Rimon, 1990)) de-
fined to satisfy properties that guarantee asymp-
totic stability. Examples of potential functions in-
clude fields that describe kinematic conditioning
(Hart and Grupen, 2007), harmonic functions for
collision-free motion (Connolly and Grupen, 1994),
and force closure functions for grasping and manip-
ulation (Platt et al., 2002).

The sensitivity of the potential to changes in the
value of motor variables is captured in the task Jaco-
bian, J = ∂φ(σ)/∂τ . Reference inputs to lower-level
motor units are computed by controllers c(φ, σ, τ),

such that

∆τ = J#φ(σ), (1)

where J# is the Moore-Penrose pseudoinverse of J
(Nakamura, 1991).

Multi-objective control actions are constructed
by combining control primitives. Concurrency is
achieved by projecting subordinate/inferior actions
into the nullspace of superior actions, where

∆τ = J#
supφsup +

[
I − J#

supJsup
]
J#
infφinf . (2)

This prioritized mapping assures that inferior con-
trol inputs do not destructively interfere with supe-
rior objectives and can be extended to n-fold con-
currency relations. In the following, we will use a
shorthand for the nullspace projection that uses the
“subject-to” operator “/.” The control expression
cinf / csup—read, “cinf subject-to csup”—is short-
hand for Equation 2.

The combinatorics of potentials Ωφ, and resources
Ωσ and Ωτ defines all closed-loop actions a ∈ A that
the robot can employ.

2.2.2 Controller State

The error dynamics (φ, φ̇) created when a controller
interacts with the task domain supports a natu-
ral discrete abstraction of the underlying continu-
ous state space (Huber and Grupen, 1997). In this
paper, we will use a simple discrete state definition
based on convergence events. Because φ̇ is negative
definite for asymptotically stable controllers, we can
define a predicate pi(φ, φ̇) associated with controller
ci = c(φ, σ, τ), such that:

p(φ, φ̇) =

X : φ(σ) state is unknown
− : φ(σ) has undefined reference
0 : |φ̇| > ε

1 : |φ̇| ≤ ε,

where ε is a small constant. The “−” condition
means that no target stimuli is present in the feed-
back signal. A collection of n distinct primitive
control actions forms a discrete state space S ≡
(p1, · · · , pn).

2.2.3 Learning Sensorimotor Programs

Sensorimotor programs can be learned in the control
basis framework given the state and action spaces
S and A defined by the set {Ωφ,Ωσ,Ωτ} (as ex-
plained above) and a reward function R. Formu-
lating the learning problem as a Markov Decision
Process (MDP), a learning agent can estimate the
value, Φ(s, a), of taking an action a in a state s

Figure 1: A policy for the program called Saccade-

Track that moves a pan/tilt camera to search for a vi-

sual stimuli and track that stimuli when found.

in terms of its expected future reward using re-
inforcement learning (RL) techniques such as Q-
learning (Sutton and Barto, 1998). Q-learning esti-
mates the value function through trial-and-error ex-
perience by the update-rule:

Φ(s, a)← Φ(s, a) +α(r+ γ maxa′Φ(s′, a′)−Φ(s, a))

where γ ∈ [0, 1] is the discount rate, α ∈ [0, 1]
is the learning rate, and r is the reward gener-
ated by R. With training, this estimate is guar-
anteed to converge to the true value Φ∗. A policy
π probabilistically maps states to actions by maxi-
mizing the expected sum of future reward, such that
π(s) = argmaxai

Φ(s, ai).
Representing behavior in terms of a value func-

tion provides a natural hierarchical representation
for control basis programs where maxima in the value
function such that |Φ̇| < ε, capture convergence
events in the policy, just as |φ̇| < ε captures con-
vergence events in primitive controllers (where ε is
a small positive constant). These maxima occur at
states where the probability of transitioning to an-
other state with higher value is sufficiently low for
all possible actions, given π. Although a program
may have its own complex transition dynamics, only
a single state predicate is observed at a higher level.

Reward functions have been employed to learn
control basis programs for quadrupedal locomo-
tion (Huber and Grupen, 1997) and bimanual grasp-
ing (Platt, 2006). Other work has explored using
an intrinsic reward function to learn a series of hi-
erarchical manipulation behaviors for a bimanual
robot (Hart et al., 2008). The next section provides
an example of one such program.

2.2.4 Example: SaccadeTrack

This program (Figure 1) moves a pan/tilt camera
with motor variables, θ, to a configuration it is likely
to find a visual feature on the image plane and then
tracks that feature by moving it to the image center
q0 = [u0, v0]. This program consists of two control

actionsA = {csaccade, ctrack}. The csaccade controller
is defined as:

csaccade , c(φ0, ε0,θ) (3)

where the potential is a quadratic navigation func-
tion φ0 = 1

2εT0 ε0, and the sensor signal for this con-
troller is

ε0 = (θ − θref), (4)

where θ is the current configuration of the pan/tilt
head, θref ∼ P (θ|q = q0), and q = [u, v] is the im-
age coordinate of the visual feature. Put simply, the
reference for this controller is sampled from the dis-
tribution of configurations where the visual feature
has been tracked in the past.

The ctrack controller is defined as:

ctrack , c(φ1, ε1,θ) (5)

with potential function φ1 = 1
2εT1 ε1, and motor units

θ, but with

ε1 = (q− q0) (6)

representing the visual feature’s offset from the cen-
ter of the image plane. This controller minimizes
that offset.

Figure 1 shows a policy over a state space defined
by these two controllers, Sst ≡ (psaccade, ptrack).
This program begins by running ctrack to determine
if the visual feature is present on the image plane.
If it is, the state transitions to (X0). If it is not, it
transitions to (X−) from which the program enters
a loop that sequentially executes csaccade and ctrack
until the feature is found. When this happens, the
ctrack controller executes until convergence in state
(X1).

3. Generalization and Transfer in the
Control Basis

We now demonstrate how control basis programs
may be factored into an abstract representation that
may be generalized to new contexts.

3.1 Controller Abstraction

Our technique for generalization relies on controller
abstraction. Abstraction allows for the exploita-
tion of equivalent sources—or “types”—of measure-
ment (Henderson and Shilcrat, 1984). Let T be the
set of types supported by the sensor and effector
sets Ωσ and Ωτ . A set of three types are used
in the experiment section of this paper, such that
T = {tx, tf , tθ}, where tx and tf represent Cartesian
positions and forces in <3, and tθ represents sets of
configuration variables of an n-DOF manipulator in

<n. For the experiments presented in this paper, all
effector resources are of type tθ.

Objective functions Ωφ provide typing constraints
on the input sensor and output effector types that
are used to compute control signals. As a result, an
objective function φ ∈ Ωφ with a characteristic input
type (CIT), tin ∈ T , and characteristic output type
(COT), tout ∈ T , represents a family of functionally
equivalent controllers, which we will call an abstract
action, a(φ, tin, tout). For example, if φ is a harmonic
function that has the property ∇2φ = 0, the abstract
action a(φ, tx, tθ) represents a class of control actions
that provide collision-free motion plans in <3 to a
manipulator configuration output in <n. However,
goals and obstacles in φ can be observations O ∈ <3

derived from a laser scanner, a stereo vision system,
a tactile probe, or any other equivalent sources of
position information. Abstract actions a ∈ A can be
single- or multi-objective, in which case the action
represents a prioritized set of abstract actions.

3.2 Generalization of Programs

In this section, we show how to generalize con-
trol programs into abstract plans that are param-
eterized at run-time. To limit exploration in the
combinatorial space of controller parameterizations,
we constrain generalization by maintaining domain
compatibility—or typing—as defined in the last sec-
tion. A complete description of generalization in the
control basis in terms of MDP homomorphisms is
presented in Platt (Platt, 2006).

Our factorization technique relies on drawing a
distinction between the declarative and procedural
components of a controller. Let the (ordered) declar-
ative and procedural parts of a prioritized control
law ci = c(φ0, σ0, τ0) / · · · / c(φn, σn, τn) be defined,
respectively, as follows:

declarative(ci) = (a0, · · · , an) (7)
procedural(ci) = (ω0, · · · , ωn) (8)

where each am here is a single-objective abstract ac-
tion, such that am = a(φm, type(σm), type(τm)), ωm
is set of a sensor and effector resources, such that
ωm = 〈σm, τm〉 that meet the CIT and COT typing
constraints of φm, and m = 0 . . . n.

Generalization of control basis programs occurs
through a process demonstrated in Figure 2, dia-
gramming the key contribution of this paper. A con-
trol basis program is factored into declarative and
procedural components that depend on environmen-
tal context fj ∈ F . The context F captures envi-
ronmental features, not all of which may be directly
observable by an agent. For example, factoring the
SaccadeTrack program in Figure 1 represents a
general plan for finding and tracking any feature (vi-
sual, tactile, or auditory).

Figure 2: Sensorimotor programs in the control basis can

be factored into procedural and declarative components

and generalized to new environmental contexts, by means

of the policy ψ(ai, fj), where ai ∈ A and fj ∈ F .

Given an abstract program, a decision must be
made about how to proceduralize each abstract ac-
tion with sensorimotor resources. Let ψ be a map-
ping from abstract action, a ∈ A, and context,
f ∈ F , to a set of sensorimotor resources for each
controller, such that

ψ : (a, f) 7→ (ω0, · · · , ωn). (9)

One useful procedural policy for a single objective
abstract control action a(φi, tin, tout) is defined as:

ψ(a, f) = argmaxωi
Pr(pi = 1|ci, a, f) (10)

where ωi = 〈σi, τi〉, ci is a controller parameterized
by φi and resource model ωi, pi is its state value, and
ωi obeys the CIT and COT typing constraints of φi,
such that type(σi) = tin and type(τi) = tout. Intu-
itively, ψ picks the best resource parameterization for
the abstract action that will cause the controller to
transition as specified in the declarative policy. This
policy can easily be extended to multi-objective con-
trol laws by finding the set of procedural parameteri-
zations that preserve the transitions of all objectives.
This technique is consistent with the homomorphism
technique presented in Platt (Platt, 2006). It is also
an extension of previous work by the authors where
relational models were used to capture procedural
task knowledge (Hart et al., 2005).

4. Experiments

Reaching to and touching objects is a precursor skill
necessary for all manipulation behavior. We call this
behavior ReachTouch. In this section, we demon-
strate how this skill can be represented in the control
basis, how a nominal plan for it can be learned in a
constrained setting, and finally how it can be gen-
eralized to new contexts that incorporate common-
sense control knowledge. We show in simulation how

the techniques for generalization described in Sec-
tion 3.2 provide significant performance gains over
non-generalizable control basis programs. We con-
clude by showing that using our approach, learning
ReachTouch and generalizing it to new contexts
can occur in a practical amount of time on a real
robot.

Figure 3: The experimental bimanual robot, Dexter.

Our experimental platform is the bimanual robot
Dexter, seen in Figure 3. The robot has two 7-
DOF Whole-Arm Manipulators (WAMs) from Bar-
rett Technologies, two 3-finger 4-DOF Barrett Hands
equipped with one 6-axis force/torque load-cell sen-
sor on each fingertip, and a stereo camera pair
mounted on a pan/tilt head.

4.1 Controller Definitions

ReachTouch requires three control actions, de-
scribed below.

4.1.1 SaccadeTrack

The SaccadeTrack program show in Figure 1 used
as a single abstract action and parameterized by the
image coordinates of a visual feature present in both
cameras. In our robot experiments, we used highly-
saturated visual regions of interest.

4.1.2 reach

Tracking a feature in both cameras provides the nec-
essary input to perform stereo triangulation and sup-
ply a reach controller with a stream of characteristic
input type Cartesian reference goals. This controller
is defined as:

creach , c(φx, εx,θarmi
) (11)

where φx = 1
2εTx εx, and εx = (xarmi

−
xsat) is the Cartesian difference between the po-
sition of homogeneous regions of high satura-
tion and the position of robot end-effector i.
Valid effector resources for this controller are

θarmi
∈ {θarm−left,θarm−right,θarm−both}. Con-

troller creach defined using τ = θarm−both performs
a two-handed reach.

4.1.3 Touch

The Touch controller maintains a constant force on
all finger-tip sensors on a hand. This controller is
defined as

ctouch , c(φf , εf ,θhandi) (12)

where φf = 1
2εTf εf , and εf = (fhandi − fref)

capturing the force error between the current
force signature on the finger-tip sensors on handi
and the reference force fref (2 N on each fin-
ger in the performed experiments). The allow-
able effector set for this controller is θhandi

∈
{θhand−left,θhand−right,θhand−both}. ctouch param-
eterized by each of these resources will make contact
with either the left-hand, right-hand, or both hands,
respectively.

Controllers creach and ctouch have multiple valid
parameterizations based on arm/hand choice and
therefore can be generalized to the abstract actions

areach , a(φx, tx, tθ) (13)
atouch , a(φf , tf , tθ) (14)

because type(εx) = tx, type(εf) = tf , and all effector
resources τ ∈ Ωτ are of type tθ.

4.2 Experimental Setup

In the first set of experiments, we used a sim-
ple simulation of the robot to learn a policy for
ReachTouch in a constrained setting. In the
first stage of these experiments, the simulated robot
uses only its left arm and left hand to reach
to and touch a small simulated object. Half of
the time, this object is presented in front of the
robot, but the rest of the time it must be searched
for and found by means of the SaccadeTrack
program. The action set for these expriments
is A = {SaccadeTrack, creach, ctouch, creach /
ctouch, ctouch/creach}. The corresponding state space
is Srt ≡ (pst, preach, ptouch). A value function is ap-
proximated by exploration using Q-learning with an
ε-greedy exploration strategy where α = 0.1, γ = 0.8
and ε = 0.2. The reward function is the intrin-
sic reward function presented in (Hart et al., 2008).
For the experiments presented in this work, this re-
ward function provides a single unit of reward when
ptouch = 1, and zero reward otherwise.

After an optimal policy was learned under these
conditions, a new stage of learning occured when we
enriched the simulated context and allowed the robot
to use its other hand (either independently or in a 2-
handed reach), to generalize the program learned in

the earlier stage. In these training episodes, half of
the time a large simulated object that necessitates
a 2-handed reach/touch was placed in the robot’s
bimanual workspace. When the small simulated ob-
ject was presented the other half of the time, it was
placed either statically on the left or right, or on one
side moving with a velocity in the direction of the op-
posite hand. When the object is placed statically on
the right, the robot must use a right-handed reach
and touch, and similarly for when the object is on
the left. However, if the object is initially on the
right, but moving to the left, the robot must use an
anticipatory left-handed reach to be able to touch it
in time (and similarly for the symmetric situation).
The object size, initial position, and velocity were
simulated as real-valued quantities.

During these episodes, the simulated robot learned
a procedural policy ψ in the form of Equation 10
based on a joint probability distribution estimated
from observed experience. This policy uses environ-
mental feature set F = {xobj ,vobj , γobj}, where xobj
is the Cartesian position of the localized object in
the robot’s coordinate system, vobj is its Cartesian
velocity, and γobj is its volume. This feature set F
comprises the first-order statistics (first and second
moments, and velocity) of the observed object.

We compared the results of this simulated learn-
ing experiment to a situation where the richer con-
text F was provided from the beginning of the train-
ing episodes, and the agent had to learn both the
declarative policy π and the procedural policy ψ con-
currently. We then compared both of these experi-
ments to a “flat,” baseline ReachTouch learning
experiment that did not use the techniques for gen-
eralization and abstraction presented in this paper.
In these experiments, separate control actions (and
corresponding state bits) for reaching and touching
with the left, right, or two-arm and -hand options
are provided as separate explorable actions. Extra
state predicates were also provided in the state de-
scription capturing the binary (left/right) “locale”
and (small/large) “scale” of the object as well as its
tertiary velocity (left, right, or zero). These bits are
necessary to maintain the Markov property for the
state description in place of the environment model
F used for generalization. Note, also that providing
these state bits provide a simplified (discrete) state
representation that gives the “flat” learner an advan-
tage over the simulated experiments that learn with
real-valued data.

A final set of experiments using the techniques for
generalization are performed on the real robot, and
the results are compared to those of simulated ex-
periments. The experiments on the real robot are
performed without any bootstrapping from the sim-
ulated learning experiments. The simulated experi-
ments were performed solely to make a comparison

Figure 4: An optimal policy learned for ReachTouch.

Srt ≡ (pst, preach, ptouch). pst is the predicate value of

the SaccadeTrack program.

to a flat design that requires too much time to run
on the real robot.

4.3 Results

4.3.1 Simulation Results

Figure 4 shows an abstract policy derived from the
factored ReachTouch program learned during the
constrained episodes(the first stage) of the first ex-
periment. We see that initially the policy chooses the
atouch / areach and transitions to state (X0−) if an
object is found visually, or (X −−) if one is not. In
the former case, the action is continued until contact
is made with the object, defining the reference sig-
nal to atouch, and a transition to (X00) occurs. The
policy then continues to execute this action until the
control actions complete and goal state of (X11) is
reached. If an object is not initially found, the policy
chooses the hierarchical action SaccadeTrack that
executes until an object is found. At this point the
atouch / areach is chosen until the touch completes.
If the reach action converges in state (X1−) with-
out providing a tactile reference for the touch con-
troller, the action is repeated until such a reference
is achieved in state (X00).

Figure 5 shows the average reward per state tran-
sition for all three of the simulated ReachTouch
experiments. The learning curves are averaged over
100 trials of 200 simulated episodes and normalized
to their optimal average reward values (resulting in
an ε-greedy max value of 0.8 for ε = 0.2). Normaliza-
tion was necessary for comparing the results because
the “flat” and factorable optimal policies requred a
different number of state transitions to touch the ob-
ject.

In the figure, the solid, red line shows the gener-
alization experiment where the declarative policy is
first learned in a contrained setting before the con-
text is opened up (at episode 30) to incorporate the
richer, more complex situations. After an initial
sharp drop at the beginning of this stage (lasting

0 20 40 60 80 100 120 140 160 180 200
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Episodes

Av
er

ag
e

Re
w

ar
d

(N
or

m
al

iz
ed

)
ReachTouch Transfer and Generalization (avg. 100 trials)

Staged Generalization
Flat Learning
Generalization

Figure 5: Average reward per state transtion over 100 tri-

als for the ReachTouch experiments performed in sim-

ulation.

about 10 episodes), performance rapidly improves as
the procedural policy is learned with contingencies
for position, velocity, and volume of the simulated
object. During these episodes, if the intial proce-
dural choice does not work, the other options are
“cycled-through” until the desired (declarative) state
transition is achieved. This experiment shows how a
policy learned in a constrained learning can quickly
be transfered to new contexts with only a short, tem-
porary decrease in performance.

The dashed, blue line of Figure 5 shows the perfor-
mance when the environmental context is rich from
the beginning of learning, and the declarative and
procedural policies must be learned at the same time.
During these trials, if a reach does not result in a
touch reference, the agent does not know if this is
due to having a poor declarative or poor procedu-
ral policy, and hence can not “cycle-through” op-
tions like the previous agent could. This agent does
poorly in comparison to the staged learning agent,
finally catching up after about 50 episodes. How-
ever, this second agent still out-performs the “flat”
learner—shown by the dotted, gray line. This agent
takes about 140 episodes to converge, even with the
simplified, discrete state representation. If continous
state information had been incorporated instead, we
hypothesize that its performance would have further
degraded.

4.3.2 Real Robot Results

Figure 6 shows how the 2-stage ReachTouch gen-
eralization experiment performed on the robot Dex-
ter (averaged over 10 trials) compares to the simu-
lation results (averaged over 100 trials). The robot
does worse than the simulated agent in the first 15-20
learning episodes, but manages to learn the optimal
policy seen in Figure 4 by the end of the first stage.

0 5 10 15 20 25 30 35 40 45 50
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22
Real Robot vs. Simulation for Generalization

Episodes

Av
er

ag
e

Re
w

ar
d

Pe
r S

ta
te

 T
ra

ns
iti

on

Real Robot (avg. 10 trials)
Simulator (avg. 100 trials)

Figure 6: Performance of generalized learning on the

robot in (dashed-blue) and in simulation (red).

(a) (b)

Figure 7: Dexter (a) reaching out towards and (b) touch-

ing a highly-saturated small object.

For these experiments a small, highly-saturated ob-
ject (Figure 7) was presented within reach of the left
hand for 25 episodes. Aftert this point, exploration
was turned off (a practical decision resulting in a
slightly higher average reward) and a stage provid-
ing an enriched procedural context began. This stage
included training episodes with the large ball seen
in Figure 3 and with the small ball either statically
placed on the robot’s left or right side, or moving
from one side to the other in front of the robot.

During this stage of learning, the procedural pol-
icy ψ was estimated using the C4.5 decision tree
learner (Quinlan, 1993). This algorithm is advan-
tageous because it is simple, fast, and provides intu-
itive results that are easily interpretable by a human.
Figure 8 shows the tree learned after one of the real
robot’s 10 training trials (the other trials produced
similar results). The first decision captures when the
robot should use the two-handed reach to touch the
large ball. If, however, the robot finds the small ball
and it is moving to the left (the negative y-direction
of the robot’s cooridinate frame) with an appreciable
velocity, the tree recommends that the robot use its
left hand. If, however, the ball is moving to the right
(positive y-direction), it should use its right hand.
Finally, the last split predicts that if the ball is not

Figure 8: This decision tree shows the resulting procedu-

ral policy for choosing which arm to reach with based on

object volume, position, and velocity.

moving, the robot should use the hand on the same
side as the object. This policy reflects clear common-
sense knowledge about handedness, scale, and veloc-
ity concerning one- and two-hand ReachTouch op-
tions.

5. Conclusions and Discussion
We introduce a methodology for generalization and
transfer that can be applied to real-robot systems to
learn commonsense behavior in a practical amount
of time. We use standard Q-learning with table-
lookup value functions and no function approxima-
tion. This representation provides stronger formal
properties regarding convergence and is easier to im-
plement. However, with a discrete state representa-
tion, it is necessary to pay close attention to main-
taining compact state and action representations.

We overcome the anticipated explosion of such
state descriptions that will lead to intractable learn-
ing problems by providing a means of generalization
over sensory and motor resources. In this paper, we
demonstrated in simulation the performance gains of
our generalization technique over learning in a “flat”
representation and showed that comparable results
occur when implemented on a bimanual robot. We
also showed how learning in stages provides a means
of transferring policies from one context to another
with only minor overhead.

Acknowledgments
This material is based upon work supported
under Grants ARO W911NF-05-1-0396, NASA
NNX07AD60A and NASA NNJ05JG73H.

References

Coelho, J. and Grupen, R. (1997). A control basis for learn-
ing multifingered grasps. Journal of Robotic Systems,

14(7):545–557.

Cohen, P. R., Chang, Y., and Morrison, C. T. (2007). Learning
and transferring action schemas. In Proceedings of the 2007
International Joint Conference on Artificial Intelligence,
Hyderabad, India.

Connolly, C. and Grupen, R. (1994). Nonholonomic path plan-
ning using harmonic functions. Technical Report 94-50, Uni-
versity of Massachusetts, Amherst.

Drescher, G. (1991). Made-Up Minds: A Constructionist Ap-
proach to Artificial Intelligence. MIT Press, Cambridge,
MA.

Hart, S. and Grupen, R. (2007). Natural task decomposition
with intrinsic potential fields. In Proceedings of the 2007 In-
ternational Conference on Intelligent Robots and Systems
(IROS), San Diego, California.

Hart, S., Grupen, R., and Jensen, D. (2005). A relational repre-
sentation for procedural task knowledge. In Proceedings of
the 2005 American Association for Artificial Intelligence
(AAAI) Conference, Pittsburgh, Pennsylvania.

Hart, S., Sen, S., and Grupen, R. (2008). Intrinsically motivated
hierarchical manipulation. In Proceedings of the 2008 IEEE
Conference on Robots and Automation (ICRA), Pasadena,
California.

Henderson, T. and Shilcrat, E. (1984). Logical sensor systems.
Journal of Robotic Systems, 1(2):169–193.

Huber, M. and Grupen, R. (1997). Learning to coordinate con-
trollers - reinforcement learning on a control basis. In Pro-
ceedings of the Fifteenth International Joint Conference on
Artificial Intelligence (IJCAI), Nagoya, JP. IJCAI.

Koditschek, D. and Rimon, E. (1990). Robot navigation func-
tions on manifolds with boundary. Advances in Applied
Mathematics, 11(4):412–442.

Konidaris, G. and Barto, A. (2007). Building portable options:
Skill transfer in reinforcement learning. In Proceedings of
the Twentieth International Joint Conference on Artificial
Intelligence, pages 895–900.

Mehta, N., Natarajan, S., Tadepalli, P., and Fern, A. (2005).
Transfer in variable-reward hierarchical reinforcement learn-
ing. In Workshop on Transfer Learning at Neural Informa-
tion Processing Systems, Cornvallis, Oregon.

Mugan, J. and Kuipers, B. (2007). Learning distinctions
and rules in a continuous world through active exploration.
In 7th International Conference on Epigenetic Robotics
(Epirob07).

Nakamura, Y. (1991). Advanced Robotics: Redundancy and
Optimization. Addison-Wesley.

Nilsson, N. (1994). Teleo-reactive programs for agent control.
Journal of Artificial Intelligence Research, pages 139–158.

Piaget, J. (1952). The Origins of Intelligence in Childhood.
International Universities Press.

Platt, R. (2006). Learning and Generalizing Control Based
Grasping and Manipulation Skills. PhD thesis, Department
of Computer Science, University of Massachusetts Amherst.

Platt, R., Fagg, A. H., and Grupen, R. (2002). Nullspace compo-
sition of control laws for grasping. In International Confer-
ence on Intelligent Robots and Systems (IROS), Laussane,
Switzerland. IEEE/RSJ.

Quinlan, J. (1993). C4.5: Programs for Machine Learning.
Morgan Kaufmann Publishers, San Mateo, CA.

Ravindran, B. (2004). An Algebraic Approach to Abstraction in
Reinforcement Learning. PhD thesis, Department of Com-
puter Science, University of Massachusetts Amherst.

Sutton, R. and Barto, A. (1998). Reinforcement Learning. MIT
Press, Cambridge, Massachusetts.

Wilson, A., Fern, A., Ray, S., and Tadepalli, P. (2007). Multi-
task reinforcement learning: A hierarchical bayesian ap-
proach. In Proceedings of the 2007 International Joint Con-
ference on Machine Learning, Cornvallis, Oregon.

